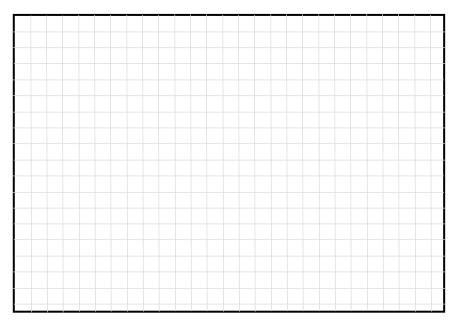


Better Than Bought Helicopter Prop

Engineer:									

Additional Engineering Team Member(s)



Designed by DaNel Hogan and Sherrie Dennis
with special thanks to Slater Harrison – the SciencetoyMaker
More STEMAZing Sciencing and Engineering Journals,
like this one, can be found here:

https://stemazing.org/stemazing-sciencing-and-engineering-journals/

Original Purchased Propeller Design

Peak Performance for Rubber Band

Record trials of various rubber bands under various conditions to determine which one gets the best performance out of the helicopter.

Best performance = highest height

Width		Length	# of Revs				
Notes							
Width							
Wi	dth	Length	# of Revs				
Wi	dth	Length	# of Revs				

Engineering Never Ends!

you were going to keep making your propeller rototype better, what modifications would you hake next and why?	
	_
	_
	_

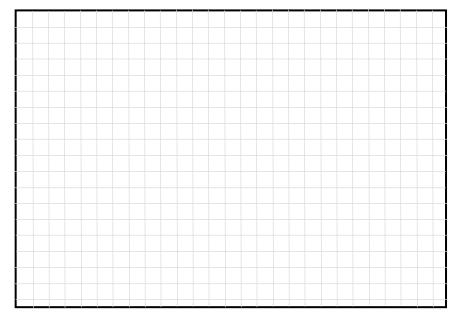
9

propeller blade pattern

19 mm X 70 mm (3/4" X 2 3/4")

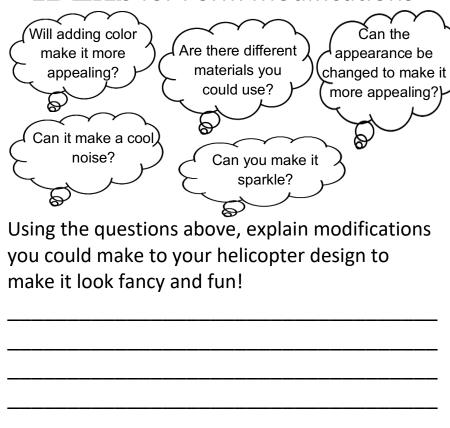
propeller blade pattern

19 mm X 70 mm (3/4" X 2 3/4")

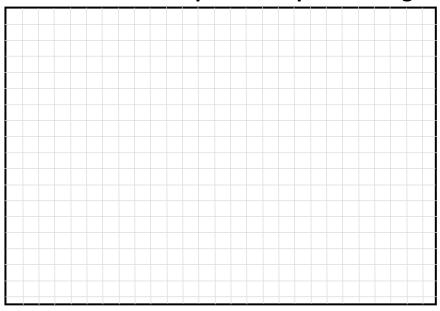


Widt	h Length	# of Revs
Notes		
Widt	h Length	# of Revs
Notes		
Widt	h Length	# of Revs
Notes		
Widt	h Length	# of Revs
Notes		
Widt	h Length	# of Revs
Notes		
Widt	h Length	# of Revs
Notes		
Widt	h Length	# of Revs
Notes		

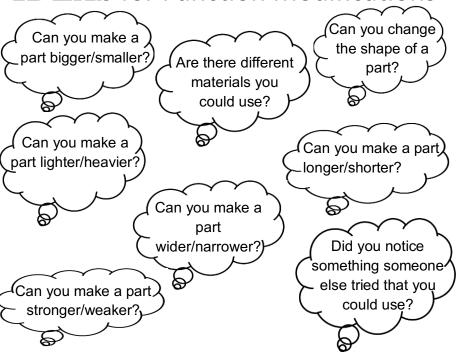
Prediction: Which propeller do you think will perform the best, reach the highest height, when twisted up the same number of revolutions?


Manufactured Prop or #STEMontheCheap Prop

#STEMontheCheap Propeller Design

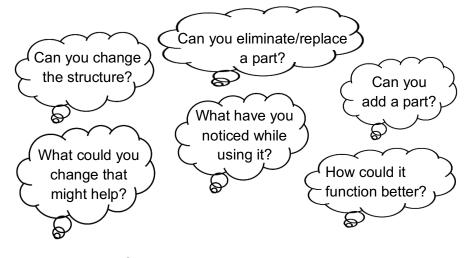

Was #STEMontheCheap propeller **Design 1** better than **purchased propeller**? (circle one) **YES NO**Explain evidence to support your claim above.

IDEAS for Form Modifications


8

#STEMontheCheap Best Propeller Design

Why do you think this propeller design produced better
results than the other designs you tested?
How did you work as a team to develop your best
propeller design?


IDEAS for Function Modifications

What modification did you make to #STEMontheCheap propeller **Design 2**? ______

Was #STEMontheCheap propeller **Design 2** better than **purchased propeller**? (circle one) **YES NO** Explain evidence to support your claim above.

IDEAS for Function Modifications

What modification did you make to
#STEMontheCheap propeller **Design 3**? ______

Was #STEMontheCheap propeller **Design 3** better than **purchased propeller?** (circle one) **YES NO**

Explain evidence to support your claim above.

What modification did you make to
#STEMontheCheap propeller Design 4 ?
Was #STEMontheCheap propeller Design 4 bette
than purchased propeller? (circle one) YES NO
Explain evidence to support your claim above.
What modification did you make to
#STEMontheCheap propeller Design 5 ?
W/o a #CTEN/o math o Change in manual law Designs E heatte
Was #STEMontheCheap propeller Design 5 bette
than purchased propeller? (circle one) YES NO
Explain evidence to support your claim above.