One Page Kite

Materials

Kite Template
$1 / 4$ " Standard Hole Punch
String (Baker's Twine from Dollar Tree)

Flexible Straw
3/4" Wide Transparent Tape
Crepe Paper (party streamer)

Vocabulary (See What the heck? Explanation of Science section below for definitions.)

Flight
Force

Lift
Weight

Thrust
Drag

Figure 1

Figure 2

Figure 3

Figure 4

STEP 8: Secure streamers to the bottom of the kite as shown either in Figure 7 to the right or like the kite shown at the top of the first page.

What do you notice?

STEP 9: Fly the kite! (Children may have to run around to get their kites to fly if there is no wind or only a light breeze.)

NOTICE BREAK: What do you notice?

What do you wonder?

Children use their senses to observe by looking, touching, and listening. Curiosity about the natural world leads children to ask questions. They ask:
Why? Where? What if? How? Who?
Ask "What do you wonder?" Write down ALL their questions on a Wonder Wall or in a Wonder Journal.

Read Aloud

Kite Flying by Grace Lin
Let's Fly a Kite by Stuart J. Murphy

Play to Learn

Some questions may have come up already in "What do you wonder?", but now engage children to complete the phrase "I wonder what would happen if..."

For example, they might ask:

- I wonder what would happen if I added two tails?
- I wonder how long we can make the tails and still have the kite fly?
- I wonder how many tails we could add?
- I wonder if the tails could be different lengths?
- I wonder if the color of the tails matter?
- I wonder if we could make a bigger kite?
- I wonder if we could make a smaller kite?
- I wonder what would happen if the length or size of the straw was different?
- I wonder what would happen if we used a different type of string?
- I wonder what would happen if we used a different type of paper for the kite template?
- I wonder what would happen if we used fabric instead of paper for the kite template?
- I wonder what other items we could use to make a kite?

As much as possible and within reason, let the children test their questions by trying the experiments they are proposing. Ask children if one kite works better or worse than the other. Let them compare and contrast their kites to observe what is the same and what is different. Let them play to learn while they make their observations about the kites they build.

Additional Engagement Ideas

- Tell a story about the journey a kite might take if it was released.
- Have children find another kite with a similar characteristic.
- Engage children to decorate their kites with patterns or shapes.
- Engage children with other wind related activities and lessons.
- Teach a lesson about symmetry and have the children decorate their kites with patterns that are symmetric.
- Reference the engineering design process as the children make modifications to their kites.

What the heck? Explanation of the Science

A force is a push or a pull on an object. The four forces of flight (i.e. Lift, Weight, Drag, and Thrust) affect kites in the same way they affect airplanes, and anything else that flies. Lift is the upward force that pushes a kite into the air. Lift is generated by differences in air pressure, which are created by air in motion over the body of the kite. Kites are shaped and angled so that the air moving over the top moves faster than the air moving over the bottom. Daniel Bernoulli, an 18th century Swiss mathematician, discovered that the pressure of a fluid (like air) decreases as the fluid speeds up.
 Since the speed of the air above the kite is greater than the speed of air below, the pressure above is less than the pressure below and the kite is pushed into the air and - Tada - lift! Weight is the downward force generated by the gravitational attraction of the Earth on the kite. The force of weight pulls the kite toward the center of the Earth. Thrust is the forward force that propels a kite in the direction of motion. An airplane generates thrust with its engines, but a kite must rely on tension from the string and moving air created by the wind or the forward motion of the kite flyer to generate thrust. Drag is the backward force that acts opposite to the direction of motion. Drag is caused by the difference in air pressure between the front and back of the kite and the friction of the air moving over the surface of the kite. To launch a kite into the air the force of lift must be greater than the force of weight. To keep a kite flying steady the four forces must be in balance. Lift must be equal to weight and thrust must be equal to drag.

Wind is obviously a big part of kite flying. But what do you do if you don't have any wind or you're trying to fly your kite inside? Kite flyers create lift, drag, and thrust with various walking patterns, arm movements, and spinning to make kites fly when there is no wind or to fly them indoors. Whether inside or out it doesn't matter whether the wind moves over the surface of the kite or the kite is pulled through the air - lift must overcome weight and thrust must overcome drag to keep the kite soaring.

Reference: https://airandspace.si.edu/stories/editorial/how-kites-fly

SAFETY CONCERNS

- Be sure children have enough room to run around if there is no wind outside or you are flying the kites indoors.
- Always be sure to fly kites FAR away from power lines!

AZ Early Learning Standards

Science Standard - Strand 1: Inquiry \& Application - Concept 1: Exploration, Observation \& Hypotheses
The child observes, explore, and interacts with materials, others, and the environment.
Science Standard - Strand 1: Inquiry \& Application - Concept 2: Investigation
The child researches their own predictions and the ideas of others through active exploration and experimentation.

