

The figure above shows a normal distribution. This is also referred to as the "Normal Curve" or Gaussian distribution. This only applies to continuous (measured) data and not to discrete (counted) data. There are many types of data, which follow the normal distribution in the natural and social sciences. Learning to tell the story of your data involves analyzing the standard deviation and standard error of the data you have collected.

Variable Measured (x)

X	$(x-\bar{x})$	$(x-\bar{x})^2$	Average or Mean of Data
			$\bar{x} ==$
			Sum of (trials minus mean) squared
			$\sum (x - \bar{x})^2 =$

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

- s = sample standard deviation
- $\Sigma = \operatorname{sum} \operatorname{of} \dots$
- \overline{x} = mean or average of trials
- n = number of measurement trials

$$SE_{\bar{x}} = \frac{1}{\sqrt{1-x}} = \frac{1}{\sqrt{1-x}} = \frac{1}{\sqrt{1-x}}$$

Tell the Story

About 68% of the	variable a	falls between the values of
	and	
mean + 1σ	mean - 1 σ	falls how on the values of
About 95% of the	variable n	
	and	
mean + 2σ	mean - 2 σ	
It is highly unlikely	v to find a value for the	
		variable name
above	or below	·
mean + 3c	3	mean - 3 σ
The mean of the _		could be off by as
	• varia	ple name
much as plus or m	1inus,	based on the sample size collected.
	standard error (SE)	
The standard erro	r of our group who coll	ected five samples is
		SE (group)
Compared to the s	standard error of the cl	asses data combined which is
		SE (class)
Explain why:		