\qquad
\qquad

Uncovering the Story Data Tells

https://en.wikipedia.org/wiki/Standard_deviation\#/media/File:Standard_deviation_diagram.svg
The figure above shows a normal distribution. This is also referred to as the "Normal Curve" or Gaussian distribution. This only applies to continuous (measured) data and not to discrete (counted) data. There are many types of data, which follow the normal distribution in the natural and social sciences. Learning to tell the story of your data involves analyzing the standard deviation and standard error of the data you have collected.

Variable Measured (x) \qquad

x	$(x-\bar{x})$	$(x-\bar{x})^{2}$

Average or Mean of Data
$\bar{x}=\square=$

Sum of (trials minus mean) squared
$\sum(x-\bar{x})^{2}=$ \qquad

$$
s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}
$$

$\mathrm{s}=$ sample standard deviation
$\sum=$ sum of ...
$\bar{x}=$ mean or average of trials
$\mathrm{n}=$ number of measurement trials

$$
S E_{\bar{x}}=\frac{s}{\sqrt{n}}
$$

$S E_{\bar{x}}=$ standard error

$$
S E_{\bar{x}}=\frac{}{\sqrt{ }}=
$$

Tell the Story

